
AUTOMATED TESTS:
First column: Percentage of Classes covered by tests
Second column: Percentage of Methods covered by tests
Third column: Percentage of Lines covered by tests (including branches)

Total number of tests: 86
Results before Assessment 2 changes: 86 passed, 0 failed
Results after Assessment 2 changes: N/A

Testing was not completed before the implementation for assessment 2 thus not leaving
enough time for the team to update and adapt the tests to the new implementation which
causes some to break the compiler due to the new changes. The team therefore does not
have sufficient information on how many tests pass, and/or are still valid.



MANUAL TESTS:

1)
Title: testChefHorizontalMovementAdjustmentTopRight

Description: This test checks if there is a positive movement input in the x axis for the chef,
comparing the tile the chef is currently occupying with the tile north-east of him, taking into
account the chef’s height, and adjusting the chef’s movement (stopping him from crossing
into any of those tiles) if there are objects/counters the chef shouldn't be able to walk
through, otherwise the chef continues moving as per usual.



Related Components: Chef

Related Requirements: FR_MOVE_PLAYABLE_CHARACTER

Authors: Galin 28/04/2023

Setup:
● 5x5 tiled map with boundaries from coordinates (0,0) and (4, 4)
● A chef at position x = 1 and between y = 1 and y =2, of height 1 and width 1
● An ingredient station positioned at (2, 2) with width of 1 and height of 1

Steps:
1. An input of xMovement above 0.001f.

xMovement = 1f.
2. A calculation that finds the movement of the chef from his right side in the positive x

axis.
rightBorder = 1 + 1 + 1f

3. Checks the cells south-east, directly east and north-east of the chef and returns
either a null, or a rectangle with the coordinates and width/height of the
chef/station/counter in that cell.
hitBoundsBottom = null, hitBoundsMiddle = null, hitBoundsTop = (2, 2, 1, 1)

4. A sum of the negative width of the chef, minus the collision skin, which is a value of
0.01f, as well as subtracting the x coordinate of the chef is made.
adjustment = -(1) - (0.01f) - (1) = -1 - 0.01f - 1

5. All branches are cleared and if the values for the hitBounds rectangles are null, the
branch is skipped. In this case the branch only the “(hitBoundsTop != null)” is hit and
the adjustment to movement is carried out.
xMovement = The minimum between 1f and (2 + (-1 - 0.01f - 1) = -0.01f), which in
this case is -0.01f

Expected Outcome: Chef is pushed the opposite direction the value of the collisionSkin
(0.01f).

Actual Outcome: xMovement = -0.01f

Result: Pass

2)
Title: testChefHorizontalMovementAdjustmentMiddleRight

Description: This test checks if there is a positive movement input in the x axis for the chef,
comparing the tile the chef is currently occupying with the tile directly east of him, taking into
account the chef’s height, and adjusting the chef’s movement (stopping him from crossing



into any of those tiles) if there are objects/counters the chef shouldn't be able to walk
through, otherwise the chef continues moving as per usual.

Related Components: Chef

Related Requirements: FR_MOVE_PLAYABLE_CHARACTER

Authors: Galin 28/04/2023

Setup:
● 5x5 tiled map with boundaries from coordinates (0,0) and (4, 4)
● A chef at position x = 1 and y = 2, of height 1 and width 1
● An ingredient station positioned at (2, 2) with width of 1 and height of 1

Steps:
1. An input of xMovement above 0.001f.

xMovement = 1f.
2. A calculation that finds the movement of the chef from his right side in the positive x

axis.
rightBorder = 1 + 1 + 1f

3. Checks the cells south-east, directly east and north-east of the chef and returns
either a null, or a rectangle with the coordinates and width/height of the
chef/station/counter in that cell.
hitBoundsBottom = null, hitBoundsMiddle = (2, 2, 1, 1), hitBoundsTop = null

4. A sum of the negative width of the chef, minus the collision skin, which is a value of
0.01f, as well as subtracting the x coordinate of the chef is made.
adjustment = -(1) - (0.01f) - (1) = -1 - 0.01f - 1

5. All branches are cleared and if the values for the hitBounds rectangles are null, the
branch is skipped. In this case the branch only the “(hitBoundsMiddle != null)” is hit
and the adjustment to movement is carried out.
xMovement = The minimum between 1f and (2 + (-1 - 0.01f - 1) = -0.01f), which in
this case is -0.01f

Expected Outcome: Chef is pushed the opposite direction the value of the collisionSkin
(0.01f).

Actual Outcome: xMovement = -0.01f

Result: Pass

3)
Title: testChefHorizontalMovementAdjustmentBottomRight

Description: This test checks if there is a positive movement input in the x axis for the chef,
comparing the tile the chef is currently occupying with the tile south-east of him, taking into



account the chef’s height, and adjusting the chef’s movement (stopping him from crossing
into any of those tiles) if there are objects/counters the chef shouldn't be able to walk
through, otherwise the chef continues moving as per usual.

Related Components: Chef

Related Requirements: FR_MOVE_PLAYABLE_CHARACTER

Authors: Galin 28/04/2023

Setup:
● 5x5 tiled map with boundaries from coordinates (0,0) and (4, 4)
● A chef at position x = 1 and between y = 2 and y =3, of height 1 and width 1
● An ingredient station positioned at (2, 2) with width of 1 and height of 1

Steps:
1. An input of xMovement above 0.001f.

xMovement = 1f.
2. A calculation that finds the movement of the chef from his right side in the positive x

axis.
rightBorder = 1 + 1 + 1f

3. Checks the cells south-east, directly east and north-east of the chef and returns
either a null, or a rectangle with the coordinates and width/height of the
chef/station/counter in that cell.
hitBoundsBottom = (2, 2, 1, 1), hitBoundsMiddle = null, hitBoundsTop = null

4. A sum of the negative width of the chef, minus the collision skin, which is a value of
0.01f, as well as subtracting the x coordinate of the chef is made.
adjustment = -(1) - (0.01f) - (1) = -1 - 0.01f - 1

5. All branches are cleared and if the values for the hitBounds rectangles are null, the
branch is skipped. In this case the branch only the “(hitBoundsBottom != null)” is hit
and the adjustment to movement is carried out.
xMovement = (2 + (-1 - 0.01f - 1) = -0.01f), which in this case is -0.01f

Expected Outcome: Chef is pushed the opposite direction the value of the collisionSkin
(0.01f).

Actual Outcome: xMovement = -0.01f

Result: Pass

4)

Title: testChefHorizontalMovementAdjustmentTopLeft

Description:This test checks if there is a negative movement input in the x axis for the chef,
comparing the tile the chef is currently occupying with the tile north-west of him, taking into



account the chef’s height, and adjusting the chef’s movement (stopping him from crossing
into any of those tiles) if there are objects/counters the chef shouldn't be able to walk
through, otherwise the chef continues moving as per usual.

Related Components: Chef

Related Requirements: FR_MOVE_PLAYABLE_CHARACTER

Authors: Galin 28/04/2023

Setup:
● 5x5 tiled map with boundaries from coordinates (0,0) and (4, 4)
● A chef at position x = 3 and between y = 1 and y =2, of height 1 and width 1
● An ingredient station positioned at (2, 2) with width of 1 and height of 1

Steps:
1. An input of xMovement below -0.001f.

xMovement = -1f.
2. A calculation that finds the movement of the chef from his left side in the negative x

axis.
leftBorder = 1 + (-1f)

3. Checks the cells south-west, directly west and north-west of the chef and returns
either a null, or a rectangle with the coordinates and width/height of the
chef/station/counter in that cell.
hitBoundsBottom = null, hitBoundsMiddle = null, hitBoundsTop = (2, 2, 1, 1)

4. A subtraction is made from the collision skin which is a set value of 0.01f with the x
coordinate of the chef
adjustment = 0.01f - 3

5. All branches are cleared and if the values for the hitBounds rectangles are null, the
branch is skipped. In this case the branch only the “(hitBoundsTop != null)” is hit and
the adjustment to movement is carried out.
xMovement = The maximum between -1f and (2 + 1 + (0.01f - 3)), which in this case
is (2 + 1 - 3 + 0.01f = 0.01f)

Expected Outcome: Chef is pushed the opposite direction the value of the collisionSkin
(0.01f).

Actual Outcome: xMovement = 0.01f

Result: Pass

5)

Title: testChefHorizontalMovementAdjustmentMiddleLeft



Description: This test checks if there is a negative movement input in the x axis for the chef,
comparing the tile the chef is currently occupying with the tile directly west of him, taking into
account the chef’s height, and adjusting the chef’s movement (stopping him from crossing
into any of those tiles) if there are objects/counters the chef shouldn't be able to walk
through, otherwise the chef continues moving as per usual.

Related Components: Chef

Related Requirements: FR_MOVE_PLAYABLE_CHARACTER

Authors: Galin 28/04/2023

Setup:
● 5x5 tiled map with boundaries from coordinates (0,0) and (4, 4)
● A chef at position x = 3 and y = 2, of height 1 and width 1
● An ingredient station positioned at (2, 2) with width of 1 and height of 1

Steps:
1. An input of xMovement below -0.001f.

xMovement = -1f.
2. A calculation that finds the movement of the chef from his left side in the negative x

axis.
leftBorder = 1 + (-1f)

3. Checks the cells south-west, directly west and north-west of the chef and returns
either a null, or a rectangle with the coordinates and width/height of the
chef/station/counter in that cell.
hitBoundsBottom = null, hitBoundsMiddle = (2, 2, 1, 1), hitBoundsTop = null

4. A subtraction is made from the collision skin which is a set value of 0.01f with the x
coordinate of the chef
adjustment = 0.01f - 3

5. All branches are cleared and if the values for the hitBounds rectangles are null, the
branch is skipped. In this case the branch only the “(hitBoundsMiddle != null)” is hit
and the adjustment to movement is carried out.
xMovement = The maximum between -1f and (2 + 1 + (0.01f - 3)), which in this case
is (2 + 1 - 3 + 0.01f = 0.01f)

Expected Outcome: Chef is pushed the opposite direction the value of the collisionSkin
(0.01f).

Actual Outcome: xMovement = 0.01f

Result: Pass



6)

Title: testChefHorizontalMovementAdjustmentBottomLeft

Description:This test checks if there is a negative movement input in the x axis for the chef,
comparing the tile the chef is currently occupying with the tile south-west of him, taking into
account the chef’s height, and adjusting the chef’s movement (stopping him from crossing
into any of those tiles) if there are objects/counters the chef shouldn't be able to walk
through, otherwise the chef continues moving as per usual.

Related Components: Chef

Related Requirements: FR_MOVE_PLAYABLE_CHARACTER

Authors: Galin 28/04/2023

Setup:
● 5x5 tiled map with boundaries from coordinates (0,0) and (4, 4)
● A chef at position x = 3 and between y = 2 and y = 3, of height 1 and width 1
● An ingredient station positioned at (2, 2) with width of 1 and height of 1

Steps:
1. An input of xMovement below -0.001f.

xMovement = -1f.
2. A calculation that finds the movement of the chef from his left side in the negative x

axis.
leftBorder = 1 + (-1f)

3. Checks the cells south-west, directly west and north-west of the chef and returns
either a null, or a rectangle with the coordinates and width/height of the
chef/station/counter in that cell.
hitBoundsBottom = (2, 2, 1, 1), hitBoundsMiddle = null, hitBoundsTop = null

4. A subtraction is made from the collision skin which is a set value of 0.01f with the x
coordinate of the chef
adjustment = 0.01f - 3

5. All branches are cleared and if the values for the hitBounds rectangles are null, the
branch is skipped. In this case the branch only the “(hitBoundsMiddle != null)” is hit
and the adjustment to movement is carried out.
xMovement = (2 + 1 + (0.01f - 3)), which in this case is (2 + 1 - 3 + 0.01f = 0.01f)

Expected Outcome: Chef is pushed the opposite direction the value of the collisionSkin
(0.01f).

Actual Outcome: xMovement = 0.01f

Result: Pass



The “adjustVerticalMovementForCollision” method is the exact same copy as the
“adjustHorizontalMovementForCollision” method however except for checking 3 cells east
and west of the chef it checks the cells north-west, directly north, north-east, south-west,
directly south and south-east of the chef. Because of this the code is almost identical except
all the “getX()” methods are replaced with “getY()” and all the “getWidth()”s have become
“getHeights()”s, which means the essential logic would be the same meaning any tests ran
would have the same outcome as the manual tests written for
adjustHorizontalMovementForCollision method.


