
Change Report
Galin Dzhumakov

Aisyah Firoz Khan

Faran Lane

Samuel Nicholson

Jack Polson

Alana Witten



Part 2a) :

We made sure to get all the other teams' artefacts in an editable form. Initially, we had a
meeting to discuss what changes we wanted to make to each deliverable. In this meeting we
used the convention of turning text red if we wanted to remove it and adding new text in
blue. This allowed us to easily track what changes we have made. We also kept three
versions of each deliverable: an old version, a new version and an intermediate version that
kept the different coloured text. We asked the other group for changes that the client
suggested so we could add these to any changes we thought to make. We chose Google
Docs to track our changes as it allows multiple people to work on the document
simultaneously, make comments to allow for reviewing of changes and the ability to suggest
changes directly. We also made sure to get their source code and their architecture in
PlantUML form so we could make direct changes to their work.

Against our new requirements, we created a to-do list of what needed to be changed as well
as a priority of what shall and should be implemented. We regularly committed our code to
track individual changes that have been made.



Part 2b)i : Requirements

We made very minor changes to their introduction of how requirements were elicited and
presented. The original can be found here: https://eng-25.github.io/Req1.pdf.This is because
we followed a very similar process. The only difference is that we did not make contact with
The University of York Communications Office so we removed this point as seen in the
updated version here: https://eng-25.github.io/Req2.pdf. Although we followed a similar
format for how our requirements were displayed, we did not follow their Natural Language
format. We also included a brief point about how we elicited requirements and updated the
table after receiving an updated brief.

We made minor changes to the language included in their table due to the change in
requirements. An example of this is for the requirement UR_CONTROL_COOKS. In the
original version it states there are two cooks whereas we changed it to just describe the
process of moving them. As there is now a different number of cooks depending on the
mode/progress, this better tracks to the requirements. We split certain user requirements
into functional requirements due to their being too much detail that is no longer applicable to
the new requirements. UR_COOK_FOOD originally stated the recipes but as there is now a
difference in recipes depending on the mode chosen, this is a more accurate description.
Due to updates in the requirements, we also updated certain requirements.
UR_CUSTOMERS originally said that each customer requires one dish but the new brief
states that a customer can ask for more than one dish so this needed to be updated. We
removed certain requirements that we deemed unnecessary (e.g. UR_BRANDING). We
noticed that there were requirements in the brief from assessment 1 that were missing from
their table. One example of this was a tracker for the number of reputation points. Therefore,
we added this requirement. We added new functional requirements that specifies the
distinction between the two modes. This is included in the ID as the suffixes SCENARIO and
ENDLESS. We fixed an inconsistency in their table also. They had a functional requirement
FR_CHANGE_PLAYABLE_CHARACTER which linked to a user requirement
UR_CONTROL_CHEFS. This user requirement does not exist so as this was an issue of
updating the original name and not its reference, we changed it.

https://eng-25.github.io/Req1.pdf
https://eng-25.github.io/Req2.pdf


Part 2b)ii : Architecture

After eliciting initial requirements, we first decided to update the old class diagrams. In our
first iteration of the main class diagram, we knew the game would now have to have 2
modes - scenario and endless, so we changed the GameScreen class to be abstract, with 2
child classes for the 2 different modes. From analysing the code given to us, we could
determine the CustomerManager could only handle 1 order (Recipe) at a time, and that each
order was made up of exactly 1 Recipe, so we decided to add an intermediate Customer
class between CustomerManager and Recipe classes. This meant the CustomerManager
could still use a lot of its previous logic written to handle a Recipe, instead handling
Customers. The customer class would then handle a List<Recipe> to allow for different sized
orders. We added a new OvenStation class, which we planned to use for the new recipes in
the game - pizza and jacket potato. This would allow us to add some new, more challenging
game mechanics, making endless mode more complex. We also added the
PowerupManager class, following the previous code's design to use managers linking to the
GameScreen, each manager handling multiple instances of its managed class. We made the
PowerupManager handle multiple instances of the abstract Powerup class, as we didn’t
know which powerups we would add and therefore couldn't determine exactly how we would
implement their specific classes. Finally, we packaged up the classes based on the code
given to us and added some missing classes we felt were important to the diagram, such as
all the Ingredient and Recipe child classes.

After some time implementing, and upon further reflection of the previous code given to us,
we created a second iteration of the main class diagram. We had realised the GameScreen
class itself handled very little to no actual game logic and instead most classes were added
to a main libgdx Stage, which would call an act() method on all of its children. This meant
having 2 new GameScreen instances would be rather obsolete and a lot of unnecessary
work. Instead, we decided to add an isScenario field to the GameScreen class which would
be passed into any classes which needed to handle differing logic based on game modes,
allowing them to maintain the design of handling their own logic when act() is called.
Secondly, we made OvenStation now extend CookingStation. We wanted the OvenStation to
act similarly to the CookingStation but handle different types of inputs, so it made sense to
have this relation. On top of this, we added the IFailable interface for the CookingStation and
OvenStation classes to use, as they would be the stations with failable steps. We had now
begun to implement specific powerups, so we could refine our Powerup classes.
TimedPowerup would act as a base for any lasting powerup over a period of time, whilst the
ISingleUsePowerup could be implemented in any single use powerups, allowing them to
have their own unique structures and logic but ensuring they implemented an activate
method. Finally, we reduced their child Ingredient and Recipe classes as we had realised
they were not needed at all and would in most cases just call super constructor and
implement no extra functionality.

In our new game class diagram, (link to their old one here) we added new GameScreen
fields to account for difficulty and multiple game modes. In the Chef class, we added a
speedMultiplier field, which would be used for an easily modifiable movement speed (useful
for a powerup for example). We added a Customer list to CustomerManager, as well as the

https://eng-25.github.io/assessment2.html#oldarch2
https://eng1-32.github.io/classDiagrams.html#final1
https://eng-25.github.io/assessment2.html#figure1
https://eng-25.github.io/assessment2.html#figure2
https://eng1-32.github.io/classDiagrams.html#final2


getNewCustomer() method to represent the fact that the CustomerManager now handled
Customers not Recipes and the randomPowerup() method to show that powerup events
happen in the CustomerManager – in our implementation, powerups would have a chance to
randomly trigger upon serving a customer. In the Station class, we added a clearStation()
method, a new functionality which we felt was essential for smoother gameplay, allowing
players to clear a station holding ingredients at any point. We also added locked and price
fields, as well as a buy method to show that stations could be locked and bought. Finally, we
added relevant loading and saving methods as this was a big new functionality in the
software.

We did not change any logic or code relevant to the Observer and Subject interfaces, so
their class and sequence diagrams did not need any changes.

In our new stations class diagram, (link to their old here) we added the new OvenStation
class. As it was a subclass of CookingStation, we also had to change some methods in
CookingStation to be protected, not private. Finally, we had changed RecipeStation to using
a Map instead of integer fields to represent held ingredient counts. This made it easier to
store and handle in one variable, as well as making it much more scalable. A similar map
was also added to OvenStation.

Lastly, we changed the old UI class diagram. In our new diagram, we added relevant failbar
render methods to StationActionUI and StationUIController classes, wanting to replicate the
progress bar methods already existing. The FinishGameUI method now had passed in
parameters as it would hand off data to the game’s EndOverlay, as opposed to simply
displaying text on the game UI when the game was finished. Importantly, we added resize
methods. The previous code had not implemented much resizing logic and had only used
some percent values in some places. Implementing a resize method would allow us to make
sure all the UI would resize properly. We also added update methods for new UI elements,
money and reputation. Finally, we added the addRecipeGroup() method, as orders were now
groups of recipes, it allowed us to implement a system to render dynamically sized and
changing orders.

As well as class diagrams, we had to make changes to the previous behavioural diagrams
given to us. Firstly, we changed the old ChefSelected state diagram (link to our new one
here) to account for the possibility of more than 2 chefs now being possible.

As previously mentioned, the collider sequence diagram did not need any changes. The chef
state diagram also did not need any changes, as the logic was still the same.

We updated the old Screens state diagram (link to our new one here) to account for the new
difficulty and load screens, as well as an exit button. We also made changes to represent
pausing and ending the game, via both save and exit as well as the game finishing.

https://eng-25.github.io/assessment2.html#oldarch1
https://eng-25.github.io/assessment2.html#figure9
https://eng-25.github.io/assessment2.html#figure3
https://eng1-32.github.io/classDiagrams.html#final3
https://eng1-32.github.io/classDiagrams.html#final4
https://eng-25.github.io/assessment2.html#figure4
https://eng1-32.github.io/behaviouralDiagrams.html#b1
https://eng-25.github.io/assessment2.html#figure5
https://eng-25.github.io/assessment2.html#figure6
https://eng-25.github.io/assessment2.html#figure6
https://eng1-32.github.io/behaviouralDiagrams.html#b2
https://eng-25.github.io/assessment2.html#figure7


Part 2b)iii: Method selection and planning

Upon inspection of the method selection and planning document we inherited, we did not
feel that any change to part A was necessary. This was due to the fact that the software
engineering methods and the development or collaboration tools that the previous team had
used to support their project were the same as the ones we have been utilising.

When we were planning our project we chose to use GitHub to host and share our code as it
allowed us to collaborate with each other on the project. Our IDE of choice was IntelliJ due
to its advanced debugging features and it is available on multiple operating systems.
Furthermore, our chosen method of communication was Discord as all members were
familiar with it and used it regularly. Finally, we used Google Drive to share and collaborate
on the documentation associated with the project. These pieces of software are the same as
those used by the team of developers we inherited from and therefore no change is required
for this part of the document.

Secondly, moving onto part B of the deliverable, we had a very similar approach to the
previous team’s organisation and the planning approach to the project. We also assigned the
roles of Meeting Chair, Secretary, Librarian, and Report Editor to different team members;
however, we also employed a shadow system that the previous team had not incorporated.
This change can be seen within the new version of the Method selection and planning
document here https://eng-25.github.io/Plan2.pdf. The table (Figure 1) now shows who
within our team was responsible for each role as well as who was assigned to shadow each
role. The previous teams table can be found within the document
https://eng-25.github.io/Plan1.pdf. We felt this was a necessary change to make to the
document as we found the shadowing system we had in place to be extremely useful and we
felt that we would continue to obtain value from it with it incorporated into the planning of the
next stage of the project.

Finally, moving onto part C of the deliverable which outlines the previous team's systematic
plan for their project. We have decided to leave their plan in place untouched, we have done
this so that we can show the overall plan of the whole project. Therefore, the changes we
have made to this part of the deliverable is the addition of our systematic plan for the project
since inheriting it until completion. This can be found on pages 7 and 8 of the new
deliverable: https://eng-25.github.io/Plan2.pdf. We have made these changes to the
document so that it provides us with a clear roadmap for the project, showing the ideal
timelines for different tasks and dependencies between tasks. It is also important to have
this plan in place to improve our time management and such tasks are completed when they
need to be. We felt that leaving the previous team's plan untouched and just adding ours
beneath was the best way to change this part of the document as it will show to our
stakeholders the complete journey of the product and how it has been produced from start to
finish.

https://eng-25.github.io/Plan2.pdf
https://eng-25.github.io/Plan1.pdf
https://eng-25.github.io/Plan2.pdf


Part 2b)iv : Risk assessment and mitigation

In order for us to make progress with our game and continue development from the project
we inherited, it was an important task to analyse and update the risk registers we inherited.
In order for us to continue to monitor all possible risks, the likelihood and severities, we had
to make changes to this document. The risk deliverable prior to any changes made by us
can be seen here, https://eng-25.github.io/Risk1.pdf.

We started by going through the risks that the previous developers had identified and seeing
which of these did and did not apply to us as well as the second half of the project rather
than the first part. We deemed that all of the risks identified by the previous developers were
still applicable to us as we moved forward into the next stage of updating the risk register.

As a team we discussed potential risks not included by the original developers. Our finalised
risk register, including our new added risks, can be seen here
https://eng-25.github.io/Risk2.pdf. Firstly, we tried to identify any risks associated with the
project that we deemed were a risk but had yet not been included, these are risks
R_PROJECT_07 and R_PROJECT_09. Furthermore we then identified risks associated with
the product that we felt had been missed when the previous engineers had drafted their
risks. These are referenced in our new Product risk table as, R_PRODUCT_04 and
R_PRODUCT_05. We added these risks because we felt that it was a possibility that these
could take place and therefore a mitigation and an owner should be in order to reduce the
resulting effect if these did happen.

Furthermore, as a team we had a meeting to discuss and pinpoint all of the potential risks of
inheriting a project from another team. We felt this was an important addition to our risk
documentation and necessary to be included as we felt there were several things that could
potentially go wrong with inheriting another team’s code and documentation. Initially we were
concerned of the risk of not being able to contact the previous developers or an inability to
access their documentation to aid our further development, so we came up with mitigations
for these potential risks. These risks are referred to as R_PROJECT_08 and
R_PROJECT_10 respectively within the new Project risks table.

Progressing on, we moved on to adding the risks associated with inheriting another team’s
code. These risks included, misunderstanding code/poorly written code, bugs within code
and game features being incomplete or missing. These are referenced as R_PROJECT_05,
R_PROJECT_07 and R_PROJECT_08 respectively. We felt that updating the risk registers
with the risks associated with continuing someone else’s code was a necessary change to
the document. This is because it allowed us to better understand the potential challenges
and plan accordingly, this also helped us to minimise the impact of these risks on the project
and ensure our new code is well-maintained and meets the project requirements.

One other change we have made to the risk documentation is how the severity and likeness
of a risk is measured. The group we inherited the document from used a rating system of 1-5
with 1 being low severity/likeness and 5 being high. However we felt this was necessary to

https://eng-25.github.io/Risk1.pdf
https://eng-25.github.io/Risk2.pdf


change to a rating of L/M/H (Low/Medium/High). We made this change to allow us to
effectively colour code our risk register as we feel this visual aid makes each risk easier to
read and understand, allowing us to quickly identify the most critical risks. Furthermore, this
addition helps to keep consistency within documentation so that everyone on the team
understands and interprets the risk register in the same way.

Finally the only thing we had left to change within our newly developed risk document was
the designated owners of all risks. This was an essential change as we needed to ensure
that risks were being actively monitored and managed and that there is clear communication
and accountability for risk-related decisions.


