
Software Testing Report
Galin Dzhumakov

Aisyah Firoz Khan

Faran Lane

Samuel Nicholson

Jack Polson

Alana Witten



4a).
The team took a test pyramid approach, closely sticking to the requirements of the

game, on testing as we evaluated that most of the code could be tested using unit tests with
the addition of a few integrated tests. A mixture of different methods were used, taking into
account the requirements the previous team had on the game as well as focusing on overall
Line and Branch coverage. Tests were automated where possible, however some private
methods (such as the chef movement calculation and collision methods) that could not be
accessed were tested manually.

A simple test plan was created that summarised the goals of most classes and how
they should be tested, which parts can and must be tested, when they must be tested, who
was assigned on testing them and then who analysed the results. Despite this, the initial
plan wasn’t perfect as more and more specifications were added and more possible test
branches were discovered which led us to further developing it as testing continued.
Additionally, as testing progressed, the team found out that many classes and methods
couldn’t be tested using unit tests so more integrated tests were carried out than expected.

Following the test pyramid, the automated tests were kept as short as possible with
the minimal possible scope so the testers could easily keep track of what is being tested
without worrying about anything unnecessary. Test code was also kept “DAMP” by each
having a descriptive title that shows exactly what is tested, clearly initialised variables and
methods, and a docstring that describes the test and its purpose. Alongside this, to simplify
some tests even further, or even allow some methods to run without the need to render
within the Headless environment, stubs (doubles) were used to simulate the behaviour of
some methods/classes such as the U.I Controllers within the Station or Chef tests using
Mockito as well as some fakes were used to replace the need for Texture Managers or
Texture Regions for the Food and Station tests when initialising the classes.

In terms of the actual data tested, simple getters/setters/initialisers as well as, basic
renders and draws that don’t have an impact over the logic of the game weren’t tested. The
testers used methods such as partitioning the input space for methods that require an
unknown input, always taking into account normal, boundary and erroneous data. For
example, the chef’s ingredient stack was tested using a normal input (any number between 1
and 4) of ingredients, the boundary inputs (0 and 5) as well as 2 invalid inputs such as 6 and
trying to remove and ingredient when the stack is empty (-1) covering all possible inputs for
the stack, in this case as it is a max of 5.

In conclusion, the pyramid approach, the use of a plan, the use of “DAMP” test code,
replacing some data within tests with doubles and the method of partitioning of the input
space were all used to make testing simpler, more efficient and get the team’s tests closer to
functional correctness.



4b).
Tests were grouped according to their respective folders/groupings of classes within

the main source folder. The original source code tested a total of 46% of classes, 33% of all
methods and 31% of all lines (including branches). Although these numbers seem low, the
tests cover every functional and logical specific part of the game, as most of the classes not
tested are related to UI which only impacts the design of the game and not how the logic
actually works which means the way the UI classes are presented/act cannot break the
game. Additionally, a big percentage of the methods and lines missing are getter/setter
methods, initialisers (such as the initialisation of all the stations on the map in the
GameScreen class) and methods that relate to applying textures/drawing or rendering
assets. Some of these classes (apart from all UI classes) include the “Game” and “Home”
Screens as well as, a lot of classes had parent methods they derived from where the
parent’s methods/functions were not used at all such as the base Station and Ingredient
classes.

Overall, there weren’t many opportunities to test some of the methods as unit tests,
for example, most of the tests on the “CustomerManager” class had to be done as integrated
tests through the StationTests class as there is no way of checking/creating a singular order,
same thing goes for some Chef methods as they required the initialisation of the chef
manager which required the initialisation of many UI Controllers. Additionally, for a lot of the
code to be tested efficiently, lots of doubles had to be used, such as creating stubs of UI
Controller classes or fakes of variables/classes required to verify results such as a
LinkedList<StationAction.ActionType> to mimic the results provided by the Stations as there
was no way of getting those either.

The tests classes are AssetsTests which related specifically to the UR_GRAPHICS
and UR_UX user requirements, ChefTests which dealt with the
FR_CHANGE_PLAYABLE_CHARACTER, FR_MOVE_PLAYABLE_CHARACTER and
FR_GRAB_ITEMS requirements, StationsTests which related to FR_FLIP_AND_CHOP,
FR_PLACE_ITEMS, FR_REMOVE_ITEMS and FR_SERVE_CUSTOMER and finally
FoodTests which only related to the user requirements UR_INGREDIENTS and
UR_COOK_FOOD. It is important to note that some requirements were not implemented in
the game, and so could not be tested, these include; FR_GUIDE_USER,
FR_COLOR_BLINDNESS, FR_LOADING_SCREEN, FR_SAVE_CHANGES,
FR_VERIFY_SETTINGS’_CHANGES and FR_MUTE_SFX.

Starting with the “Chef” folder, it contained the classes Chef(81% methods, 42%
lines), ChefManager(45% methods, 62% lines) and FixedStack(100% methods, 100%lines).
This folder includes tests making sure that the chef can pick up ingredients, making sure that
the chef’s ingredient stack is not exceeded and it doesn’t drop below 0. Additionally, it
included ChefManager tests such as checking if 2 chefs can be loaded and the ability to
switch between chefs. Finally, some manual tests had to be carried out to confirm that the
chef’s movement was working as intended and to also check that the chefs were colliding
properly with objects, as these methods were private. The tests confirmed that the ingredient
stack and chef movement implementations were working properly as well as the initialisation
of the chefs was correct.



The “Food” folder contains all the Ingredient classes, Recipe classes, the
ChefManager class and the FoodTextureManager. Both the “Salad” and “Burger” recipe
class were completely tested alongside all the Ingredients: “Tomato”, “Lettuce”, “Patty” and
“Bun” except the shared “getTexture()” which simply gets the appropriate asset for the
respective ingredient. The “FoodTextureManager” class was tested within the “AssetsTests”
only to validate the existence of the assets as the methods “getTexture()” and “dispose()” are
once again simple getters and don’t have an impact on the logic of the code. Finally, the
“CustomerManager” class was tested with 83% of methods as well as 72% of lines covered.
Tests within the FoodTests class included checking if food was named properly and
presented as the correct type, checking if tomatoes and lettuce could be chopped and if the
patty can be raw, half cooked and cooked. Recipes were checked to see if they take the right
ingredients and return the correct recipes, or if no recipe is given when the ingredients are
wrong. The tests for the customer manager class were entirely done as integrated tests
within the StationTests class as there was no obvious way to test methods such as
CheckRecipe() and NextRecipe() using unit tests. The tests confirmed that all the recipes
worked as intended, only forming when the correct ingredients and their variations were
present. Tests also demonstrated that the orders are a set queue, however checking the
actual orders/recipes and passing onto the next worked as intended.

The “Observable” folder contains 2 interfaces that could not be tested.

The “Screens” folder was not tested as the Game Screen and the Home Screen
classes only initialise everything else (i.e Stations, Food, Chefs, UI) into 1 class called when
the game is ran.

The “Stations” folder consisted of the following classes; ChoppingStation (75%
methods, 87% lines), CookingStation (75% methods, 89% lines), IngredientStation (75%
methods, 80% lines), RecipeStation (57% methods, 74% lines), Station (13% methods, 22%
lines), StationAction (33% methods, 45% lines), StationCollider(0% methods, 0% lines). The
StationsTests class tested if the stations returned the right possible actions at different given
scenarios, if the chopping and cooking stations did their respective actions on the
ingredients passed in by the chef, as well as checking if only the right ingredients were
accepted by a specific station. The recipe station checked if burgers and salads can be
made given the right ingredients as well as if submitting recipes worked properly. The
Ingredient Station was checked if it passed the right ingredient as well as if a chef can grab
an ingredient from it if his ingredient stack was already full. The station class is a parent
class and it was only tested if it can update a station with the right chef as all the other
methods were overridden by the children classes. StationAction class wasn’t tested as it only
contains the “getActionDescription()” method that only returns a string equivalent to the
action passed through. Finally the StationCollider class was also skipped as its only methods
were simple getters/setters that add chef subjects to a station. Overall, all tests were passed,
which mean that all the stations worked as intended, accepting the right ingredients and
returning the correct recipes/ingredients cooked/chopped.

The “UI” folder was also not tested as it consisted mainly of code that solely affected
the design of the game such as rendering buttons, textures, fonts, etc. There was no
significant, and/or potentially game-breaking, piece of code that had an impact on the actual
logic of how the game works.



PiazzaPanicGameClass was not tested as it simply, only calls the game class and
initialises some of the UI Controller classes

In terms of code completeness, we think that the tests cover most of the functional
requirements that were implemented by the previous team with the exception of
FR_FULL_SCREEN and FR_TIMER. However the Non-functional requirements are quite
vague and some couldn’t really be tested, e.g NFR_OPERABILITY as there is no correct
method to unit test that a user with no previous experience can play the game. This overall
makes the testing close to being functionally complete. The test code is also very correct as
it covers every possible type of input for every test through partitioning (testing for normal,
boundary and erroneous data) as well as, covering every possible branch for every line of
code ensuring that testing is precise and the system always works as intended.

Unfortunately, because testing was done so late into the project, after merging testing
with the implementation code for Assessment 2, a lot of the tests failed. This is because of a
mix of a lack of time, miscommunication and the rewriting/adapting of more efficient methods
and classes. A lot of tests that had constructors with specific data passed into them such as
tests on the ChefManager and CustomerManager classes failed as they had to be changed
due to new requirements and design implementations the team didn’t account for, as well as,
most tests that used any derivative class of the Ingredient class also failed as these were
changed later.



4c.
https://eng-25.github.io/assessment2.html#tests

https://eng-25.github.io/assessment2.html#tests

